Knouledge Based Systems Group
Laboratory for Computer Science

June 21, 1977

A Computational Approach to Modern Linguistics:
Theory and Implementation

by
William A. Martin

- Oraft . Draft -

A Computational Approach to Modern Linguistics
Theory and Implementation

by
William A, Martin
Yolume 1

1. Overvieu
I1. Fundamental Constructs for a Theory of English Grammar
I1l. Models of Some Major Properties of English
1V. A Basic Grammar of English
V. Representation of English Word Order in an ATN network
Vi. Parsing English
Vil. An Application - Ansuering Questions from a Data Base

Yolume 11

lI. Semantics of English
I11. WL, a Programming System Based on English
111. Semantic Pattern Matching
IV. Structure of English Dialogue
V. Generating English Sentences
Vi. Applications

Chapter 1 - Draft 1 Draft - Chapter 1

A Computational Approach to Modern Linguistics
Theory and Implementation

Contents

Chapter: 1 OVervieMs « o « o ¢ o ¢ o o ¢ o o o o o 6 s s 0 0 0009+ 3
1.1 The Complexity Barrier. « « « '« « ¢ ¢« ¢ ¢« ¢ o ¢ o o o o o « 3
1.2 ATN Netuorkss o« o« ¢ ¢ ¢ o ¢ ¢ ¢ o o o o6 06 0 o s o 0 0 o o7
1.3 The CTE Semantic Nete « o ¢ « ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o 0o o s « 9
1.4 Should Syntax be Represented in the ATN or the Worid Model 13
1.5 FIIIIng SI1ot8: ¢ o ¢ ¢ s ¢ ¢ ¢ s o o o ¢ ¢ o o o o o s o o 15
1.6 Inflections. « « ¢« ¢ s ¢ o o o o s 0 o o s s s o s o o o o 19
1.7 Naﬁing..........................22
1.8 The Passive Transformation: « « « s « o o o ¢ o o o s o o 29
1.9 [01OMB. + + v v e v e et et e e e e, 3
1.10 Other Transformations. « « « « « o o o o o o o o o o o o o 32

Chapter 1 - Draft i Oraft - Chapter 1

Acknou | edgements

This work was supported by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the Office of Naval Research
under Contract #N8@014-75-C-8661. 1 especially wish to acknouledge the
informed suggestions and steadfast support of William Carlson, the contract
moni tor,

Terry Winograd and Andee Rubin were helpful to me when I first
became interested in computational linguistics. Early versions of this
work were developed with G. A. Gorry and Rand Krumland. The current
version was inspired by an attempt to reformulate the earlier work to
conform .to ideas of Lowell Hawkinson, and owes much to discussions uith
him, Gretchen Broun and Peter Szolovits. The notation uas designed
primarily by Haukingon. Students in the MIT A/l lab, in particular Mitc
Marcus, have also been helpful. ‘

Much of the material here has been discussed and debated at
numerous meetings of the OWL system development team. Their efforts at
implementation have raised many important issues.

Finally, Ellen Lenis has been outstanding in helping with the many
revisions of this material.

Chapter 1 - Oraft ii ' Draft - Chapter 1

Preface

This work has been motivated by a desire to create knowledge based
@wa computer systems which can give advice in such areas as business, law, and
‘ medicine. An earlier version of these ideas was implemented as OWL I.
This is a good introduction to the representation of knouledge to be used
in OWL II. Houwever, it does not discuss OUWL Il as a programming |anguage,
-features of OWL I or Il introduced as solutions to problems of
implementation, or issues of computational efficiency. Therefore, anyone
wanting to use OWL I, or OWL II, will need to seek information beyond that
given here.

@Mh Chapter 1 - Draft 1 Oraft - Chapter 1

Chapter 3: Overvieu

1.1 The Complexity Barrier

In the last tuo decades |inguists have made impressive and
accelerating progress in understanding the syntax and semantics of the
English language. During the same period computational linguists have also
made advances, constructing systems for language translation and for
ansuering questions against a data base. However, by some measures, the
progress of computational |inguists has been disappointing. In many
fields, the process of implementing theories in computer programs has led
to neu insights and understanding, and the practical value of the functions
per formed by the programs has led to increased support for and interest in
the field. It is difficult to make this argument for computational
linguistics. In large measure the insights of linguists have been more
aophisticatéd and detailed than uhat computational linguists have been able
to implement, so that the implementations have been too crude to force
consideration of new linguistic issues. MWhile the coverage of English
grammar by |inguists is quite complete, the coverage in implemented
programe has been sketchy. There is uncertainty whether computer users
could live uwithin the subsets of English so far provided. Unless the
situation places the discourse in a limited domain, it seems clear that
they can not.

The problem has been one of complexity. Every major natural
{anguage program so far produced is so complex that it taxes the

capabilities of even its author to understand it. This complexity barrier

has been reached before the program encompassed all the major syntactic
structures of English and uith only the simplest of semantics. This

problem of the complexity of the description of operational systems is one

Chapter 1 - Draft 3 Oraft - Chapter 1

sthich linguists have not addressed. Use of the Augmented Transition
Netuork (ATN) to represent the syntactically correct word orders of English
was a major breakthrough by computational linguists. But this alone was
not encugh; the complexity barrier remained.

There have been tuo principal reactions to the complexity problem,
the general and the particular. The generalist reaction is to provide.the
programmer wuith more tools. Through partial automation, details are
removed from his consideration and he is given bookkeeping aids to augment
his memory. Typically, the generalist feeis that the human mind has some
sort of general purpose machinery for bullding and using very complex
information processing capabilities. To do as well in machines one must
somehou match these facilities. |

The particular reaction is to make a deeper study of the probliem at
hand, uwith an eye to simplification. Clearly, both approaches are
.Iupoﬁtant. but while there is no doubt that better programming aids will
produce a reduction in complexity, it is unlikely to be a dramatic
reduction. On the other hand, the reduction in complexity to be achieved
by careful study of a particular problem is entirely problem dependent. It
can be either dramatic or insignificant.

1 believe that natural language is open to dramatic complexity
reduction through careful study and insightful programming.v In this book I
describe a computational theory of English and an implemented system for
processing English sentences wuhich is more complete than those previously
implemented. | will refer to this computational theory of English as CTE.
Since any natural language must continually be learned by neuw generations
it is not surprising that English has strong organizing principles. In

fact, linguists have already identified many of these. So far, houever,

Chapter 1 - Draft 4 Draft - Chapter 1

-

they have made little effort to unite these principles into systems for
sentence processing and they have done relatively little work on what they
term "perceptual strategies". This work, the formation of theories |ike
CTE, remains to the computer scientist willing to familiarize himself with
the structure of language.

The vieupoint adopted here is not to deny the complexity of
language, but rather to claim that it is open to the techniques of good
systems design - to the kind of thinking found in books on structured

programming and in Simon’s book, The Architecture of Complexity. For

example, the theory of grammar presented in this book can be broyen doun as
shoun in Figure 1.1. In Chapter 2 a relatively feuw key ideas and

decisions uill be presented. Once these are determined. Chapter 3 uill
shox houw they can be used to solve a number of "hard nut" problems which
face any language processing system. Extension to a basic grammar of
English in Chapter 4 is then strongly determined by the decisions made to
handle the "hard nut" problems. With a basic grammar in hand, one can go
on to consider problems of word order introduced by stylistic alternatives

such as | picked up the block vs | picked the block up and by the fact

that sentences |ike Do good deeds and Do good deeds help? have an identical
left segment. Finally the question of parsing strategy is addressed.

Chapter 1 - Draft 5 Draft - Chapter 1

Chapter 5

Chapter 4
Chapter 3

Chapter 2
" Fundamental
Constructs
and
Modules

Models of
ey Properties

Basic Grammar

Representations of
Word Order

Parsing

Figure 1.1
Hierarchical Structures of a Theory of Grammar

A good theorg of grammar and sentence processing must be able to
treat the language accurately and in depth. Consequently, this book will
go into considerable linguistic detail. In reading it, the linguistically
naive reader will be at a disadvantage. He may be somenhat overwhelmed by
the barrage of linguistic facts and thus have difficulty evaluating the
processing advantages uwhich accrue from casting the modern ideas about
language into the framework given here. For this reason it seems
wor thiuhile to attempt an overly simplified model of the linguistic insights
and computational strategy which form the heart of CTE. MWith this model in
mind, the reader can see in the chapters to follow how it is modified to
account for the additional complexities actually faced, and how it.is in
fact implemented in terms of an extremely simple basic structure. Any

grammarians who feel this model is too simple to account for full English

Chapter 1 - Draft 6 Draft - Chapter 1

grammar should look at the references to get an idea of the kind of
material which has been incorporated in the full treatment to follou.

Th§ CTE design is the result of careful system modularization and
éareful choice of data representations., Modes of representation typically
used to represent linguistic facts are the augmented transition network
(ATN), the parenthesized expression, the semantic network, and the
procedure. Facts expressed in different modes of representation may be
mathematically equivalent yet lead to different levels of complexity in an
implemented system. In CTE, all of these modes of representation are used;

each has its role.

1.2 ATN Netuworks

Consider the follouing word strings

1.1. John kicked the bucket.
x1.2. John kicked bucket the.

The first is a grammatical sentence in English; the second is not.
(Strings judged ungrammatical are preceded by "x".) The trouble with 2 is
that in English the determiner (the, a, etc) must precede the noun. In CTE

we distinguish a finite set of syntactic categories like noun, verb,

determiner, and proper noun. Every word (or, more precisely, every sense
of a word) is assigned to a syntactic category. The CTE parser recognizes
legal word orders by tracing through ATN's with these categories on the

arcs. For example, Figure 1. 2 shows an ATN for a noun phrase.

SEQUENCE
PUSH o proper noun
proper noun
PUSH INFLECT-RIGHT
START >0 ->e > FINISH
determiner noun)
Figure 1.2

Simplified ATN for a Noun Phrase

Chapter 1 - Draft 7 Oraft - Chapter 1

The ATN is a set of nodes connected by directed arcs. Underneath the arc ,ﬂﬁ
is uritten the syntactic category of a constituent required to make the

transition represented by that arc. Above the arc is uritten the name of a

function which must be successfully executed in order to make the

transition. A push-doun stack, a marker on the sentence, and a marker on

the ATN are further used to effect the transition. The ATN is easiest to

explain by giving an example of its use in parsing the noun phrase the

bucket during the parsing of sentence 1. Refer to Figure 1.3.

sentence 1 John kicked the bucket.
string marker S

SEQUENCE

proper-noun proper-noun

PUSH INFLECT-RIGHT
ATN start -—>e >0 > X
determiner noun

ATN marker “N ‘“5.

push-doun stack

Figure 1.3

When the CTE parser encounters the word the during the analysis of
sentence 1, the parser uwill find the syntactic category of the, which is
determiner. It does this by looking in the CTE uorld model, which is a
gemantic net. The parser then locks in the world mode! to see what if any
ATN a determiner could start. (A given syntactic category can start at
most one ATN in CTE.) The parser finds that a determiner can start a noun
phrase ATN. As shoun schematically in Figure 1.3 the parser then prepares
to try to recognize a noun phrase starting uith the word the. It places a
string marker, ~S, at the, and a corresponding ATN marker, “N, at the
starting state of the noun phrase ATN. It aiso establishes an empty push- Aa%
doun stack.

Chapter 1 - Draft 8 Draft - Chapter 1

The parser is nou ready to attempt the first transition. The
starting node of the noun phrase ATN has tuwo arce leading out of it, but
since the is not a proper noun the first arc is not applicable. To.make
the transition on the second arc the parser must successfully execute the
function PUSH. This particular function is always successful, it just
places a copy of the constituent pointed to by *S onto the push-doun stack.
-When the PUSH function succeeds, the parser advances the “S and “N pointers
giving the configuration shoun in Figure 1.4,

sentence 1 John kicked the bucket.
string marker S

PUSH ‘
INFLECT-RIGHT
ATN start --> @ -~-- >e > X -
determiner noun
ATN marker N
push-doun stack THE
Figure 1.4

The parser proceeds to attempt another transition. As shown in .the
Figure, the next arc requires a noun. In the world mo&el. the parser finds
that bucket is a noun so the transition will succeed if the function
INFLECT-RIGHT can be executed successfully. The explanation of this

function requires understanding of the CTE semantic net.

1.3 The CTE Semantic Net

The nodes of the CTE semantic net are called concepts. In uhat
follous, a mapping uill be established from English affixes, words, and
phrases into concepts. Concepts are uritten as parenthesized expressions.
That ia; each node of the CTE semantic net is an expression! We will thus

establish a mapping from English affixes, words, and phrases into

Chapter 1 - Draft 9 Oraft - Chapter 1

expressions. For example, the concept corresponding to the bucket can be
uritten as the expression, (BUCKETxX THE) - the notation for concepts will
be explained momentarily.

Associated uith each concept is a set of slots. For example, the
concept KICK corresponding to the verb kick would have, among others, a
subject siot and an ocbject elotl. The subject is the thing which doea'tha
kicking and the object is the thing uhich gets kicked. Asscciated with
each slot is a description of hou it can be filled. A slot of a concept is
also a concept and so to describe a slot ue must describe a concept. Any
concept, and thus a siot, can be described by one or more predicates, and

by one or more characterizations. Predicates and characterizations are

also concepts. A predicate gives a property of something, while a
characterization gives an alternative nay of looking gt something. The
distinction is seen in saying "a tollet is uhite" vs. saying "a t.oilet is a
siphon". Describing it as a siphon ue can go on to set up a correspondence
betueen the parts of a toilet and the corresponding parts of a aiphon.'
Similarly, to say that someone is male is merely to assign him the

mascul ine property. To say that he is a _male, however, is to provide an
alternative characterization of him, uith the implication that his behavior
can be predicted by making a correspondence betueen his behavior and that
of a male. In the example at hand, we could characterize the subject slot
of kick as a person or an animal, or we could just give this slot the
predicate animate. This is shoun schematically in Figﬁre 1.5,

{ignore the xA’e for the moment).

‘Chapter 1 - Draft 16 Oraft - Chapter 1

KICK Characterizations: None

Predicates: None

Slote: (SUBJECT=xA KICK) Characterizations: None
Predicates: ANIMATE
Slots: None

(OBJECT=A KICK) Characterizations: MATTER

Predicates: None
Slots: None

Figure 1.5
A Fragment of the World Model for KICK

Everg'concept has a reference list. This reference list is similar

in function to the property lists used in programming languages |ike LISP.
The process of placing a concept, A, which represents a predicate,
characterization, or slot of a concept, B, on B's reference list is called
attachment. A reference |ist has separate sections for predicates,
characterizations, and slots, and thus whether A is a predicate,
characterization, or slot of B is determined by uhat section of B's
reference list it is on.

The description of concepts by predicates, characterizations, and
slots uwhich are themselves concepts is uhat makes the CTE world model a
semantic net. The fact that concepts are uritten as expressions, so that
predicates, characterizations, and slots are in fact assigned to
expressions, is not a common sort of thing and distinguishes the CTE from
other theories. When combined uith the notions to follow, this turns out
to be a pouerful method of describing hou language is at the same time both
idiomatic and productive of new constructions.

Examples of concepts uritten as parenthesized expressions have been
given, i.e. (BUCKETxX THE), (SUBJECTxA KICK), (OBJECTxA KICK), but the
notation used has not yet been exptained. The.expreaslon for any concept,
C. I8 constructed from two other concepts termed the genus and the
specializer of C. The general form of the expression is

(genusxmeta-attribute-abbreviation specializer).

Chapter 1 - Draft 11 Oraft - Chapter 1

There are seven possible meta-attributes as shoun in Figure 1.6.

meta-attribute abbreviation example of use

SPECIES S bull dog + (DOGxS BULL)
STEREOTYPE T lap dog » (DOGxT LAP)

INSTANCE I Fido » (DOGxI FI00)

ASPECT A subject of kick » (SUBJECTxA KICK)
RESTRICTION R fat dog » (DOGxR FAT)

INFLECTION X the bucket -» (BUCKETxX THE)
PARTITIVE P flock of sheep » (FLOCK«P SHEEP)

Figure 1.6

By definition, all references to a given concept den;te the same node in
the CTE semantic net. For example, the specializer of (SUBJECT%A KICK) or
(CBJECT=xA KICK) is the same KICK concept which has these two concepts as
slots. The genus, meta-attribute, and specializer uniquelg identify a
concept and thus serve to locate it in the semantic net.

By convention, every cohcept inherits the predicates,
characterizations, and slots of its genus, whenever those are not
contradicted by description on the concept itself. Herein lies the origin
of the term genus. Because of this convention, it makes sense to think of
the concepts as being orgénized ina hleraréhg. Concepts are pictured as

being "under" their genus. Further, one refers to (D0GaS BULL) as a

species of its genus, DOG, (DOGxT LAP) as a stereotype of DOG, etc. HMore

generally, any concept is termed a specialization of its genus.

The priﬁarg role of the specializer of a concept, C, is to
distinguish C from all other concepts having the same genus and meta-
attribute; thence the term specializer. For example, BULL distinguishes
(DOGxS BULL) from all other species of DOG. LAP distinguishes (DOGxT LAP)
from all other stereotypes of DOG.

In revien, note that while both the genus and specializer must be

used to distinguish a concept from others and thus to locate it in the

Chapter 1 - Draft 12 Draft - Chapter 1

semantic net, it is the genus which primarily determines the "behavior” and
use of a concept since predicates, characterizations, and slots are
inherited from the genus.

We return now to the recognition of the bucket as a noun phrase.
At this point the reader may find it helpful to review uhat has been said

thus far.

1.4 Should Syntax be Represented in the ATN or the World Model

Having pushed THE onto the push-doun list and recognized bucket as
a noun, the parser attempts to execute the function INFLECT-RIGHT to
complete the tfaneition to the final state of the‘noun phrase. To succeed,
INFLECT-RIGHT must succeed in inflecting the concept BUCKET corresponding
to the word, bucket, by the concept on the top of the push-doun stack, THE.
We say “succeed in inflecting" because INFLECT-RIGHT will only form this
inflection if it is permitted by the rules of grammar encoded in the
semantic net. That is, fhe ATN gives only the legal orders of syntactic
categories and uhiﬁh adjacent constituents caﬁ be combined. Further
constraints on what can be combined come from the semantic net.

To clarify uhat is going on here, consider the strings in Figure

1.7.
1.3 the bucket
*1.4 bucket the
1.5 a bucket
x1.6

a water

Figure 1.7

Given that the and a are determiners and bucket and water are nouns, the

noun phrase ATN uill rule out 1.4 because there is no series of arcs
corresponding to the ordering of syntactic categories: noun, determiner.

The noun phrase ATN uill permit 1.3, 1.5 and 1.6 since they all have the

Chapter 1 - Draft 13 Draft - Chapter 1

ordert: determiner, noun, provided that the given determiner can inflect the
given noun. The rules for what determiners can inflect what nouns are
encoded in the semantic net. These ru[éa permit 1.3 and 1.5, but prohibit

1.6.

By refining the syntactic category noun to mass noun and count noun

and then further dividing count nouns into singular and plural count nouns

we could replace the noun phrase ATN uith the one shoun in Figure

1.8

PUSH

proper noun

PUSH SPECIALIZE-RIGHT °
the b noun

PUSH

a o SPECIALIZE-RIGHT

singular count noun
Figure 1.8

The advantage of doing this would be that since uater is not a singular
count noun, the ungrammatical combination a_water would be sifted ocut by
the legal syntactic categorleé on the arcs and would never be passed to
INFLECT-RIGHT. The disadvantage is an increase in the size and complexity
of the ATN. It is a question of where these constraints should be
expressed, in the ATN arcs, in the ATN arc functions, or in the semantic
nat.

Bucket the is unacceptable because the word order is incorrect.
Since the ATN is the only formalism in CTE capable of describing word

order, bucket the must be ruled out by the ATN. A water is incorrect

Chapter 1 - Draft 14 Draft - Chapter 1

because the normal sense of water is a mass noun, and a requires a singular
count noun. There is in fact a productive mechanism by which we can create
a count noun sense of water. For example, if offered a choice from glassea

df water and coke, one could conceivably answer 1°1| take a water.

Allouable word senses do not involve uord order and need not be expressed
in the ATN.

It takes less computation to rule out a combination by failure to
belong to a syntactic category than it does to rule it out by failure of a
function on an arc. This uould seem to be an argument for elaborating the
ATN. However, when one considers how infrequently combinations like a
water occur he sees that in terms of average system performance little is
gained by Euling them out more efficientliy. '

In CTE we have chosen to make the syntactic categories on the ATN
arcs as generic as possible. This greatly simplifies the ATN’s, but,
cbviously, it places a greater burden on the semantic net and the functions
on the arcs to rule out ungrammatical combinations. Several simpler ATN
systems have been implemented (Brown, Saccerdoti) which allow more
articulated categories on the arcs. These have the advantage in
construétlon that one does not have to discover the appropriate generic
syntactic categories. Houever, if these systems grou larger the price in
complexity will become obvious. Conceivably, one can alleviate this
problem by inventing an ATN "compiler” which will automatically discover

the appropriate syntactic generalizations.

1.5 Filling Slots

Writing the CTE ATN functions and semantic net rules turns out to
be relatively straight-foruard in most cases. The key is to utilize the

hierarchical structure of the semantic net and the inheritance of slots.

Chapter 1 - Draft 15 Oraft - Chapter 1

Nouns and determiners, for example, are arranged in the hierarchies
exemplified in microcosm in Figure 1.9. These hierarchies,
incidently, show us how the parser can determine if the concept

corresponding to a particular sense of a word is in a given syntactic

category.
DETERMINER
1 DEF INI TE-DETERMINER
THE
L—-—-—- INDEF INI TE-DETERMINER
| | SINGULAR-INOEF INI TE-DETERMINER
b A
Lo
NOUN
MASS-NOUN
WATER
——————— COUNT-NOUN

\"""" SINGULAR-COUNT-NOUN

L—-BUCKET

Figure 1.9

Slncq a concept is formed from its genus, meta-attribute, and
specializer; whenever we have located é concept, we can easily obtain these
three components. It is quite simple, then, to trace through the semantic
net from a concept to its genus, and on to the genus of that genus, etc.
That is, to go "up" the semantic net toward more generic concepts. A
concept, B, Is defined to be in the class of a concept, C, 1f C is

eventual ly reached by tracing up from B as mentioned above. Since locating

Chapter 1 - Draft 16 Draft - Chapter 1

the genus of a concept takes only a couple of machine instructions in the

current implementation of CTE, the test for class membership is very tfast.
To indicate which determiners can inflect which nouns, each

determiner is given a slot called the INFLECTEE. For example, consider the

uorld model fragment shoun in Figure 1.18.

THE
Characterizations:
Features:
Slotss (INFLECTEE%A THE)
Characterizations:s NOUN
Features:
Slots:
SINGULAR-INDEF INI TE-DETERMINER
Characterizations:
Features:
Slots: (INFLECTEExA SINGULAR-INDEFINITE-DETERMINER)
Characterizations: SINGULAR-COUNT-NOUN
Features:
Slots:
Figure 1.10

The following rule of grammar can then be stated:

Gl) A concept, C, can inflect a concept, B, if B is a member of a class
formed by a characterization of the INFLECTEE slot of C.

For example, THE can inflect BUCKET because BUCKET is a member of the class

formed by NOUN (as shown in Figure 1.9) and NOUN is a characterization of

the INFLECTEE slot of THE (as shoun in Figure 1.10). Similarily, A can

inflect BUCKET because BUCKET is a member of the class SINGULAR-COUNT-NOUN

and since A inherits its INFLECTEE slot from SINGULAR-INDEFINITE-

DETERMINER, the INFLECTEE slot of A is characterized by SINGULAR-COUNT-

NOUN.

When given THE and BUCKET as arguments, INFLECT-RIGHT
a) First checks to see if the concept (BUCKET*X THE) is already present in
the semantic net. 1f so, it replaces the top element, THE of the

push-doun stack uith this concept, (BUCKET*X THE). INFLECT-RIGHT then
notifies the parser it has succeeded.

Chapter 1 - Draft 17 Oraft - Chapter 1

b) Otheruise, it checks the semantic net to see if the formation of
(BUCKETxX THE) is permitted under the rule of grammar, Gl, given
above. (This rule grammar is implicit in the operation of the
INFLECT-RIGHT procedure, i.e. it is represented procedurally.)
INFLECT-RIGHT locates the INFLECTEE siot of THE, sees that this is
characterized by NOUN, and then verifys that BUCKET is in the class
formed by NOUN. (BUCKETxX THE) being permitted, it is formed, added
to the semantic net, and placed on the push-down stack as in a).
INFLECT-RIGHT then notifies the parser it has succeeded.

c) Falling a) and b), INFLECT-RIGHT notifies the parser it has failed.

The implications of the above procedure are quite far-reaching.

The effect of step b) is to cause every grammatical expression actually

encountered to be permanently remembered as a new concept in the semantic

net. As such, it can be recognized on subsequent encounters in step a)

from its genus, meta-attribute, and specializer. The potentially expensive

test to see whether one concept can fill a slot of another is done only on
the first encounter. This seems an attractive option in a uorld of
exponentially declining computer memory prices and relatively constant
computation speeds. The retention of absolutely everything is not
esgential to CTE, but the distinction betuween grammatically permitted and
actually existing concepts is considered quite important. Once remembered,

a new concept immediately inherits descriptiona from the concepts from

uhlchllt was formed, but it also can begin to acquire its oun set of

predicates, characterizaticns, and slots, which override or suppiement

those inherited. In particular, as ue shall see once the parser reaches

the phrase kicked the bucket, it can stand for an idiomatic meaning.

Once INFLECT-RIGHT has placed (BUCKET%X THE) on the push-doun stack
in place of THE, the parser can take the transition to the final state of
the noun phrase ATN. The parse of the noun phrase is complete. In CTE,
the ATN’s are so written that the concept corresponding to the string
recognized by an ATN is aluways the only concept on the stack when the final

state of the ATN is reached.

Chapter 1 - Draft 18 Oraft - Chapter 1

1.6 Inflections

In English, the determiner and the noun must agree in number. - A
determiner, like the uhich is unspecified as to number can go with either a
singular or plural noun, the bucket, the buckets. A determiner specified

as to number requires agreement, xthese bucket. HWhere the noun has the

same singular and plural form, the correct sense must be chosen, these
sheep. As ue have seen, this constraint is implemented in CTE, by
appropriate characterization of the INFLECTEE slot of the determiner.
Fﬁhmglations other than CTE frequently employ special feature checking
func€|qns - a source of additional complexity.

Other implementations also copy features from the noun and
determiner to the expression created to represent the entire noun bhrase.

For example, since one says the buckets are, but the bucket is, it is

necessary to achieve number agreement betueen the verb and the subject noun
phrase. Commonly, the number is copied to the noun phrase and is then
fetched from there for comparison uith the verb. In CTE no copying is
done. Instead, attributes such as number are inherited by the concept
representing a noun phrase according to the general rules for inheritance
of attributes in the semantic net. This has two advantages. First, a
reduction in complexity les achieved because no copying functions need be
ufltten. Second, the complexity of the neu data structure created when a
nen sentence is parsed is reduced to a bare minimum. The concept
representing the neu sentence is constructed from existing ones uaing'
special ization. No other constructive cperations need be done in the
semantic net.

Recall that a concept inherits the predicates of its genus. The

concept (BUCKET#X THE) would thus inherit the number predicate of BUCKET as

Chapter 1 - Oraft 19 Draft - Chapter 1

required. To avoid copying, it is also necessary for (BUCKET*X THE) to
Inherit predicates, such as DEFINITE, from THE. The solution adopted in
CTE is to allou an inflection to inherit properties from both its genus and
- specializer. If an inflection, C, has genus, A, and specializer, B, then a
predicate, characterization, or slot on C overrides those inherited from A
and B and a predicate, characterization, or slot on B overrides those
inherited from A. This convention has proven to be extremely useful. The
inflection is one of the key computational devices in CTE.

Language is knoun to be open ended. Whenever something neu is
found, a neuw word can be invented to name it. When one examines the
syntactic categories one by one, however, he sees that they are not all
“open in the same sense. New determiners are invented very slouly in
comparison uwith nouns. In fact, only nouns, verbs, and adjectives are
truly open. These three categories contain words for concepts which may be
defined extra-linguistically. Obvious examples are uords for emotions,
color or taste. While the language may determine which concepts are formed
in these categories, it is not the sole source of their definitions.

Other categories, |ike adverbs, do have infiniteig many possible
members. Houever, CTE assumes that uord senses in these categories can be
divided into tﬁose native to the category, like not and very in the case of
adverbs, and words which arise through conversion from another category, as
the adverb slouly comes from the adjective glow. CTE assumes that the
native portion of such a category is finite and, in fact, can be usefully
structured using language specific principles. For example, English
pravides features by which determiners can be classified in a tree as shoun
in microcosm in Figure 1.9.

CTE assumes that the finite categories and the finite portions of

Chapter 1 - Draft 20 Draft - Chapter 1

the open categories are provided by the language for the interpretation of
the information in the truly open categories. The features used to
structure members of a finite category provide a definition of a member In
terms of ite distinction from other members. An understanding of these
features is key to understanding the language.

To revieuw, CTE assumes a finite set of suntactic categories. Only
three of these syntactic categories - noun, verb, and adjective - have a
potentially infinite amount of material native to them. The remaining
' categories have a rather small finite number of word senses all of which
can be included in a computer program for computational Iinguistlcp.

Any category besides noun, verb, and adjective which has a
potentially infinite amount of material gets it by conversion (slou «
slouly) or other forme of affixation (fry + fryable) from other infinite
categories.

In CTE we assume that conversion is aluays done by inflection. The
specializer is in the category converted to - the genus ip the category
converted from. Therefore, to find the syntactic category of a concept,
one traces up the genus except in the case of an inflection, for which one
traces.up the specializer. For example, if we make -LY an adverb then
(SLOWxX -LY) is in the semantic class of SLOW, but in the syntactic
category, adverb. Compare

1.3. He ualks slouly.
1.4. His ualking is slou.

In both sentences, an adjective, slow, is used to describe a verb, walk.
In 3 the adjective has been converted to an adverb. In 4 the verb has been
converted to a noun. The language requires that an adjective modify a noun
and an adverb modify a verb. In constructing the parsed sentences these

conventions are obeyed by the syntactic categories of the concepts

Chapter 1 - Draft 21 Oraft - Chapter 1

involved. Houever, the semantic classes of the concepts remain the same in
both examples.
It is with these thoughts in mind that determiners are taken to

inflect nouns.

1.7 Naming
To parse John kicked the bucket the CTE parser must trace through

the sentence ATN shoun in Figure 1.11.

ONE-OBJECT
Start PUSH PUSH MAKE-TENSE INFLECT-LEFT
D= > > > >
(nounxx {verbxx {(nounxx ' .
determiner) -ad=-8-null) determiner)
Figure 1.11

A Simplified Sentence ATN
The third arc of this ATN requires the sequential execution of tuwo
functions - ONE-OBJECT then MAKE-TENSE - something which didn’t arise in
the noun phrase ATN. ‘The steps in tracing through this ATN for John kicked

the bucket are shoun schematically in Figure 1.12.

sentence John kicked the bucket.
string-marker ~S

stack

sentence John kicked the bucket.
string-marker S

stack (JOHNxX NULL-DETERMINER)
gentence John kicked the bucket.
string-marker 5

(KICK=X -ED)
(JOHN=X NULL-DETERMINER)

sentence John kicked the bucket.
string-marker -]

stack after ((KICKxX (BUCKETxX THE))xX -ED)
ONE-OBJECT (JOHNxX NULL-DETERMINER)

stack after (((KICKxT (BUCKET*X THE))xX PAST-TENSE)xT
MAKE-TENSE ((MALExT (NAMExS JOHN))xX NULL-DETERMINER))

Chapter 1 - Draft 22 Draft - Chapter 1

sentence John kicked the bucket.
string-marker S
stack ((C(KICKxT (BUCKET=X THE))xX PAST-TENSE)xT
((MALExT (NAMExS JOHN))xX NULL-DETERMINER))xX DECLARATION)

Figure 1.12
Steps in-parsing John kicked the bucket

When the parser is called to parse a string of words {nto a
sentence it prepares to trace through the sentence ATN; it puts the string
marker ~S at the beginning of the sentence and sets up an empty pushdoun
stack for use in tracking through the sentence ATN.

The first arc of the sentence ATN is labeled uith (nounxx
determiner). By convention in CTE, this can be matched only by a
determiner inflecting a noun. The first word in the string, John,
corresponds to the concept JOHN, which is a proper noun, not a determiner.
The parser is faced uith the dilemma of matching a proper noun against
(nounxx determiner). There is also a further difficulty. John has tuo
sord senses, shoun in

1. John kicked the bucket.
1.5. John is a common name.

A male can kick a bucket, a name can’t. When the parser is looking at the
first word of 1 or 5, it can’t know which is the correct sense for that
sentence. |

There are tuo basic strategies which a parser can follouw in dealing
. nith multiple word senses. The first is to try each sense in turn -
returning multiple parses when more than one sense results in a correct
parse. This strategy uas used in early systems because of its simplicity,
and was found to be computationally explosive. Most uords have many
senses.

The second strategy is knoun as the uwait and see strategy. At any

decision point, the possible alternatives are lumped into classes according

Chapter 1 - Draft 23 Draft - Chapter 1

to hou they affect the decision at hand. The computation is brought
forward for each such distinct class, rather than for each alternative. To
implement the wait and see strategy each class must be represented and a
"way of getting from the class to the individual alternatives provided.

In terms of the problem at hand, there is no need to split the
senses of a word any farther than required by the arc transition attempted.
Since both word senses of John are nouns, both, if determined, would
satisfy the first arc of the sentence ATN. Suppose ue let JOHN stand for
both of these senses, which We Write (NAMExS JGHN) and (MALExT (NAMExS
JOHN)). We enter into the world model that JOHN npames (NAMExS JOHN) an&
(MALExT (NAMExS JOHN)). Naming Is represented schematically with an arrou,
as shoun in Figure 1.13 |

JOHN - (NAMEXS JOHN)
JOHN -+ (MALExT (NAMExS JOHN))

Figure 1.13

The first arc of the sentence ATN requires a noun inflected by a
determiner. It is easy, houever, to come up uith sentences uhere the
subject of a sentence is a noun without a determiner.

1. John kicked the bucket.
1.6. Water is required for |ife.

It is common in this case for grammarians to speak of a null determiﬁer.
Since the absence of a determiner can be detected sgntécticallg just as
well as any specific determiner can, no determiner can stand as a
determiner.

In CTE such null elements are explicitly inserted to obtain a
uni formity of representation. The insertion of the null determiner is done
by naming. For example suppose

JOHN -+ (JOHNxX NULL-DETERMINER)

Chapter 1 - Draft 24 Draft - Chapter 1

ie placed in the worid model. MWhen the CTE parser finds that it cannot
match JOHN to (nounxx determiner) it looks for all the concepts named by
JOHN. It finds (NAMExS JOHN), (MALExT (NAMExS JOHN)), and (JOHN=xX NULL-
DETERMINER). Using the computationally fast syntactic category test, it
eliminates all but (JOHN%S NULL-DETERMINER) as being in the wrong syntactic
category. Since John is a noun, this last one matches.

The mechanism employed here is a very general and important one 3n
CTE. A concept is takén to name another concept which is in a different
syntactic category. In order to achieve a match, the parser will trace
doun naming links looking for concepts of the syntactic category required
by the pattern to be matched. Thus, the replacement of names by the
concepts they name is driven by the matching process - that is, by the
immediate context of the name.

The walt and see strategy is implemented in the grammar and parser
by requiring that the parser never replace a name with a concept it names
if the name itself will match the pattern. That is, naming links are used
only when a match cannot be otheruise achieved.

Note that tuo slightly different uses of naming have been
introduced. In the first, JOHN stands for (NAMExS JOHN) and (MALExT
(NAHE*S.JOHN)). tuo concepts in the same syntactic category as JOHN but
Hith particular meanings lacked by JOHN. In the second JOHN stands for
(JOHNxX NULL-DETERMINER), a concept in a different syntactic category - the
syntactic category controlling the interpretation of the meaning of JOHN.

If it were in fact necessary to write a naming rule of the form

proper name + (proper-namexx null-determiner) for every proper name, the

naming mechanism would be too unuieldiy to implement. It isvneceesaru to

define naming productively. In CTE, if any concept A names an inflection

Chapter 1 - Draft 25 Oraft - Chapter 1

of itself, (AxX B) then any concept C in the syntactic class of A is
inferred to name (CxX B). For example, instead of placing JOHN - (JOHNxX
NULL-DETERMINER) in the world model it is sufficient to use PROPER-NAME -
(PROPER-NAMExX NULL-DETERMINER). Since JOHN is a PROPER-NAME, the fact
that JOHN names (JOHNxX NULL-DETERMINER) is then inferred by the'pa}ser
from (PROPER-NAMExX NULL-DETERMINER).

Having completed the transition on the first arc of the sentence
ATN, the parser tries to match the pattern on the second arc, (verbxx ~-ed-
e-null), with a concept corresponding to glggggQ In the sorld model the
parser finds thai the suffix -ED may be productively applied to verbs. (Of
course, there are exceptions for small classes of verbs which override this
general rule.) The parser thus matches (KICKxX -ED) against (verbsxx -ed-s-
null).

The third transition faces the parser uith matching (nounxx
determiner) again. The string marker is poiﬁting at the, which does not
match this pattern; nor does it name anything which matches this pattern.
But, as was already explained, the paraer recognizes that the can start a
noun phrase. In the current implementation of CTE the semantic net
contains the information that a noun phrase can indeed match the pattern
(nounxx determiner). This has been included so that the parser can avoid '
bullding a noun phrase if it could not possible match the pattern at hand.

The parser builds the noun phrase (BUCKET*X THE). To do this it
sats up a8 separate string pointer and push-doun-stack for the noun phrase.
During the formation of the noun phrase the sentence string pointer and
push-doun-stack remain unaltered. To complete the transition it must
execute the functions ONE-OBJECT and MAKE-TENSE. The function ONE-GBJECT

expects the top element on the stack to have an OBJECT slot. Its goal is

Chapter 1 - Draft 26 ' Draft - Chapter 1

to fill the OBJECT slot of this top element with the noun phrase starting
at the current location of the string mafker. In the case at hand this
means filling the OBJECT slot of (KICKxX -ED) with (BUCKET*X THE). (KICKxX
-ED) inherits its OBJECT slot from KICK. As shoun in Figure 1.5. The
OBJECT slot of KICK has been characterized as MATTER. To fill this slot
with (BUCKETxX THE), the function ONE-OBJECT must be able to characterize
(BUCKET=X THE) as MATTER. Assuming that BUCKET is in the class MATTER,
this is easy, but in the actual CTE implementation such a characterization
could require some rather expensive pattern matching.

Recall that in CTE, inflections are used to implement the syntactic
constraints of a language as illustrated by

3. He ualks slouly.
4. His ualking is slou.

Subject Predicate
3. (WALKxX PRESENT-TENSE) {SLOWxX ADVERB)
4. (WALK=X NOUN) SLOUW

In 3 the subject is In the syntactic category TENSE and the predicate in
the syntactic category ADVERB. In & the subject is in the syntactic
category NOUN and the predicate is in the syntactic category ADJECTIVE.
While the syntactic categories of 3 and 4 differ, the semantic classes do
not. Hhen filling slots other than the INFLECTEE the parser uworks with the
eemantic classes. The INFLECTEE slot is filled based on syntactic
‘categories.

Having discovered that (BUCKETxX THE) can fill the OBJECT slot of
(KICKxX -ED), ONE-OBJECT forms the expression corresponding to kicked the
. bucket. The convention followed here is to stereotype KICK with (BUCKET%X
THE), forming (KICK%T (BUCKET#X THE)) and then to inflect this with -ED,
forming ((KICKxT (BUCKETxX THE))xX -ED).

At the semantic level, (KICKxT BUCKET) is viewed as a stereotypical

- Chapter 1 - Draft 27 Oraft - Chapter 1

kind of Klgg.about which information not applicable to KICK in general may
be knoun. For example, if cous kick the bucket, the milk is spiflt.
(KICKxT BUCKET) may have different slots than KICK. UWhen combined. uith
KICK, the concept (BUCKET*X THE) performs two distinct functions. First,
it selecte a specialization of KICK, (KICKxT (BUCKET#X THE)). 1In CTE, a
convention has been implemented which insures that if 5 concept C is in
class B, then the concept (Axmeta-attribute C) is in class (Axmeta-

attribute B). This convention is called derivative subclassification,

because concepts with the same genus are thus classified into the hierarchy
of their specializers. In our example, derivative subclassification means
that since (BUCKET%X THE) is in the class BUCKET, (KICKxT (BUCKET#X THE))
is in the class of (KICKxT BUCKET) and thus inherits any slots of (KICKxT
BUCKET) uhich override those of KICK.

Besides selecting a specialization of KICK, (BUCKET#X THE) also
fills the OBJECT slot of the selected specialization. The fact that48UCKET
fills the OBJECT slot of (KICKxT (BUCKET*X THE)) can be determined from the
expression (KICKxT (BUCKET«X THE)) because in CTE the slots of a verb are
constrained to stereotype it in a specific order starting with the OBJECT.

The use of concepts to fill slots and simul tanecusly select
epeciallzations is a very important aspect of CTE. The importance of

selecting specializations of a verb is seen clearly when we compare the

difference in meaning of, for example, shoot pool, shoot rapids, shoot

picture, shoot gun, and shoot rabbit.

Having replaced the top item on the push-doun stack with ((KICKxT
(BUCKETxX THE))xX -ED) the parser begins execution of MAKE-TENSE, the
gsecond function which must be executed to make the transition on the third

arc of the sentence ATN.

Chapter 1 - Draft 28 Draft - Chapter 1

A TENSE has two slots, a SUBJECT and an INFLECTEE. MAKE-TENSE
tries to insure that the item on the top of the stack is of agntactic type,
TENSE.

It does this by attempting to match the item on the top of the
stack to (verbxx tense). To match (KICKxX -ED) to (verbxx tense), the
parser must use a third type of naming.

The world model contains a naming rule of the form

(VERBaX -ED) - (VERBxX PAST-TENSE)
This type of namjng rule is also Productiva on the genus. The parser can
therefore infer that (KICKxX -ED) names (KICKxX PAST-TENSE) and make the
transition. The SUBJECT slot of the resulting specialization is then
filled uith the next to top item on the push-doun stack. Obviously, the
item filling the SUBJECT of the TENSE must also satisfy the SUBJECT sliot of
the verb kick. As shoun in Figure 1.12, this means that JOHN must be
replaced with (MALExT (NAMExS JOHN)) because a PROPER-NOUN cannot kick a
bucket. The mechanism by which this is insured will be explained
momentarily in describing the passive transformation.

The final step in parsing John kicked the bucket is to inflect the

entire expression with DECLARATION to distinguish it from the question John
kicked the bucket?

1.8 The Passive Transformation

A basic tenet of transformational grammar is that sentence pairs
like 1 and 7 are transformationally related.

1. John kicked the bucket.
1.7. The bucket was kicked by John.

ln CTE, this relationship is seen as one betuween the slots of the

predicates kicked and was kicked. The sentence 7 satisfies the same set of

Chapter 1 - Draft 29 Oraft - Chapter 1

four ATN arc transitions in the sentence ATN as, for example, 8.
Namely, noun phrase, tensed be, adjective, prepositicnal phrase.

1.8. John uas sure of success.
In both cases, the functions on the arcs must determine if the subject noun
phrase can fill the subject slot of the adjective and if the prepositional
phrase can fill a alét of the adjective. The transformaticnal insight is
that the requirements for filllpg the subject slot of 7 are those for
filling the object slot of 13 and the requirements for whether the
prepositional phrase .of 7 can modify the adjective are those for filling
the subject siot of 1. This is expressed by the notion of slot shift. |
Specifically, the SECOND-PARTICIPLE is taken to form a syntactic category
which for simplicity can be considered a subcategory of adjective. A world
mode! fragment describing the second participle is shoun in Figure
1.14. This Figure shous that the INFLECTEE of a second participle
must be a verb and the SUBJECT of a second participle muét be the OBJECT of
ite INFLECTEE. Further, this OBJECT of the INFLECTEE has the predicate
SHIFTED, which means that it will not occur as the direct object of the
verb, as it normally would,

SECOND-PARTICIPLE:

predicates:

chatacterizations:

slotss (INFLECTEExA SECOND PARTICIPLE)
predicates:
characterizations: VERB
slots:

(SUBJECTxA SECOND-PARTICIPLE)

features:

characterizations: (OBJECT®A (INFLECTEExA

’ SECOND-PARTICIPLE))
predicates: SHIFTED
characterizations:
slotss

slots:

Figure 1.14

Chapter 1 - Oraft 30 Draft - Chapter 1

,4%

In parsing 7, the parser will find (KICKxX -ED) which it converts
to (KICK«X SECOND-PARTICIPLE) in order to make the third transition of the
sentence ATN. Then, when the parser is looking for the SUBJECT of (KICK=xX
SECOND-PARTICIPLE) the rules of inflections state that slots inherited from
SECOND-PARTICIPLE override those inherited from KICK. Thus the SUBJECT of
(KICKxX SECOND-PARTICIPLE) ie found from the SUBJECT of SECOND-PARTICIPLE.
From Figure 1.14, this Is the OBJECT of the INFLECTEE. The INFLECTEE in
this example being KICK. Thus the SUBJECT of (KICKxX SECOND-PARTICIPLE) is
the OBJECT of KICK.

The filling of a slot with by John is handled in a similar manner.

This is spelled out in detai! in the next chapter.

1.9 Idioms

John kicked the bucket is an idiomatic way of saying John died.

The syntactic scope of this idiom is demonstrated by
1. John kicked the bucket.
1.9. John has kicked the bucket.
1.18. When will John kick the bucket? _
1.11. John’s kicking the bucket upset us.
1.12. John is kicking the bucket.
x1.13. John is kicked the bucket.
x1.14. John kicked a bucket.
%x1.15. The bucket was kicked by John.
Adding to the world model the naming transformation

(KICKxT (BUCKET=X THE)) =
(DIExS (KICKxT (BUCKET%X THE)))

permits 1 to 12. Sentence 13 is disallonwed by the ATN netuork which does
not permit the formation of ((KICK«T (BUCKET%X THE))xX -ED) after forms of
be. 14 is disalloued because it uses a_bucket and the naming rule uses lgg.
bucket. 15 is ruled out because under the passive transformation (BUCKET*X
THE) is no longer used to specialize KICK as object. A more sophisticated
treatment of this .idiom would have to include the fact that the progressive
12 is marginal, .as is the progressive reading of 11.

Chapter 1 - Draft 31 ' Oraft - Chapter 1

Under the wait and see strategy this idiomatic naming
transformation would not be takeﬁ unless dictated by context - a subject

beayond the scope of this overview.

1.10 Other Transformations

As Chomsky has recently observed, "noun phrase movement” as
exhibi ted by the passive transformation accounts for many of the
transformations in traditional transformational grammar. However, there
are three other types of transformations, WH- movement, extraposition, and
minor movement. Examples of these are
WH- movement

1.16. John kicked uhat?
1.17. Uhat did John kick?

Extraposition
1.18. That you are here is great.
1.19. It is great that you are here.

Minor Movement

1.20. | picked the bucket up.

1.21. I picked up the bucket.
Extraposition and minor movement transformations are coded into the ATN.
WH- movement requires special procedures to be wuritten into the parser. To
see exactly houw these things are done the reader will have to read the

remaining chapters. We have reached a level of sophistication which

requires us to go back and develop the ideas already presented more fully

and precisely.

Chapter 1 - Oraft 32 Draft - Chapter 1

