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Preface

This work has been motivated by a desire to create knowledge based
computer systems which can give advice in such areas as business, law, and
medicine. An earlier version of these ideas was implemented as OWL I.
This is a good introduction to the representation of knowledge to be used
in OUL II. However, it does not discuss OWL II as a programming language,

-features of OUL I or II introduced as solutions to problems of
implementation, or issues of computational efficiency. Therefore, anyone
wanting to use OUL I, or OUL II, will need to seek information beyond that
given here.
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Chapter 3t Overview

1.1 The Complexity Barrier

In the last two decades linguists have made impressive and

accelerating progress in understanding the syntax and semantics of the

English language. During the earns period computational linguists have also

made advances, constructing systems for language translation and for

answering questions against a data base. However, by some measures, the

progress of computational linguists has been disappointing. In many

fields, the process of implementing theories in computer programs has led

to new insights and understanding, and the practical value of the functions

performed by the programs has led to increased support for and interest in

the field. It is difficult to make this argument for computational

linguistics. In large measure the insights of linguists have been more

sophisticated and detailed than what computational linguists have been able

to implement, so that the implementations have been too crude to force

consideration of new linguistic issues. While the coverage of English

grammar by linguists is quite complete, the coverage in implemented

programe has been sketchy. There is uncertainty whether computer users

could live within the subsets of English so far provided. Unless the

eituation places the discourse in a limited domain, it seems clear that

they can not.

The problem has been one of complexity. Every major natural

language program so far produced is so complex that it taxes the

capabilities of even its author to understand it. This complexity barrier

has been reached before the program encompassed all the major syntactic

structuree of English and with only the simplest of semantics. This

problem of the complexity of the description of operational systems is one
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which l inguists have not addressed. Use of the Augmented Transit ion

Network (ATN) to represent the syntact ical ly correct word orders of Engl ish

was a major breakthrough by computational l inguists. But this alone was

not enough; the complexity barrier remained.

There have been two principal reactions to the complexity problem,

the general and the part icular. The general 1st react ion is to provide the

programmer with more tools. Through part ia l automation, detai ls are

removed from his consideration and he is given bookkeeping aids to augment

his memory. Typically, the general 1st feels that the human mind has some

sort of general purpose machinery for building and using very complex

Information processing capabil i t ies. To do as well in machines one must

somehow match these faci l i t ies.

The particular reaction is to make a deeper study of the problem at

hand, wi th an eye to s impl ificat ion. Clear ly, both approaches are

Important, but while there is no doubt that batter programming aids wil l

produce a reduct ion in complexi ty, i t is unl ikely to be a dramatic

reduction. On the other hand, the reduction in complexity to be achieved

by carefu l s tudy of a par t icu lar prob lem is ent i re ly prob lem dependent . I t

can be e i ther d ramat ic o r ins ign ifican t .

I believe that natural language is open to dramatic complexity

reduct ion through carefu l s tudy and ins ight fu l programming. In th is book I

describe a computational theory of English and an implemented system for

processing English sentences which is more complete than those previously

implemented. I wi 11 refer to this computational theory of English as CTE.

Since any natural language must continually be learned by new generations

I t i s no t su rp r i s ing tha t Eng l i sh has s t rong o rgan iz ing p r inc ip les . In

fact , l ingu is ts have a l ready ident ified many of these. So far, however.
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they have made little effort to unite these principles into systems for

sentence processing and they have done relatively little work on what they

v t e r m " p e r c e p t u a l s t r a t e g i e s " . T h i s u o r k , t h e f o r m a t i o n o f t h e o r i e s l i k e

CTE, remains to the computer scientist willing to familiarize himself with

the structure of language.

The viewpoint adopted here is not to deny the complexity of

language, but rather to claim that it is open to the techniques of good

systems design - to the kind of thinking found in books on structured

programming and In Simon's book, The Architecture of Complexity. For

example, the theory of grammar presented in this book can be broken down as

shown in Figure 1.1. In Chapter 2 a relatively few key ideas and

decisions will be presented. Once these are determined. Chapter 3 wi 11

show how they can be used to solve a number of "hard nut" problems which

face any language processing system. Extension to a basic grammar of

English in Chapter 4 is then strongly determined by the decisions made to

{ handle the "hard nut" problems. With a basic grammar in hand, one can go

on to consider problems of word order introduced by stylistic alternatives

such as 1 picked up the block vs I picked the block up and by the fact

that sentences like Do good deeds and Do good deeds help? have an identical

left segment. Finally the question of parsing strategy is addressed.
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Figure 1.1
Hierarchical Structures of a Theory of Grammar

A good theory of grammar and sentence processing must be able to

treat the language accurately and in depth. Consequently, this book will

go into considerable l inguist ic detai l . In reading i t , the l inguist ical ly

naive reader will be at a disadvantage. He may be somewhat overwhelmed by

the barrage of linguistic facts and thus have difficulty evaluating the

processing advantages which accrue from casting the modern ideas about

language into the framework given here. For this reason it seems

worthwhile to attempt an overly simplified model of the linguistic insights

and computational strategy which form the heart of CTE. With this model in

mind, the reader can see in the chapters to follow how it is modified to

account for the additional complexities actually faced, and how it is in

fact implemented in terms of an extremely simple basic structure. Any

grammarians who feel this model is too simp Is to account for full English

* * \
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grammar should look at the references to get an idea of the kind of
material which has been incorporated in the full treatment to follow.

The CTE design is the result of careful system modularization and

careful choice of data representations. Modes of representation typically
used to represent linguistic facts are the augmented transition network

(ATN), the parenthesized expression, the semantic network, and the

procedure. Facts expressed in different modes of representation may be

mathematically equivalent yet lead to different levels of complexity in an
implemented system. In CTE, all of these modes of representation are used;
each has its role.

1.2 ATN Netuorks

Consider the following word strings

1.1. John kicked the bucket.
♦1.2. John kicked bucket the.

The first is a grammatical sentence in English; the second is not.

(Strings judged ungrammatical are preceded by "*".) The trouble with 2 ie

that In English the determiner (the, a, etc) must precede the noun. In CTE

we distinguish a finite set of syntactic categories like noun, verb.

determiner, and proper noun. Every word (or, more precisely, every sense

of a word) is assigned to a syntactic category. The CTE parser recognizes

legal word orders by tracing through ATN's with these categories on the

arcs. For example. Figure 1. 2 shows an ATN for a noun phrase.

, SEQUENCE
PUSH ^**«^ proper noun

proper noun

PUSH INFLECT-RIGHT
S T A R T > • - > • > ^ > F I N I S H

d e t e r m i n e r n o u n

Figure 1.2
Simplified ATN for a Noun Phrase
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The ATN Is a set of nodes connected by directed arcs. Underneath the arc

Is written the syntactic category of a constituent required to make the

transition represented by that arc. Above the arc is written the name of a

function which must be successfully executed in order to make the

transition. A push-down stack, a marker on the sentence, and a marker on

the ATN are further used to effect the transition. The ATN is easiest to

explain by giving an example of its use in parsing the noun phrase the

bucket during the parsing of sentence 1. Refer to Figure 1.3.

sentence 1 John kicked the bucket,
s t r i n g m a r k e r * S

SEQUENCE
PUSH.

p r o p e r - n o u n p r o p e r - n o u n

P U S H I N F L E C T - R I G H T
ATN star t —>• ->•• > X

determiner noun

ATN marker

push-down stack

*N

Figure 1.3

When the CTE parser encounters the word the during the analysis of

sentence 1, the parser will find the syntactic category of the, which ie

determiner. It does this by looking in the CTE world model, which is a

semantic net. The parser then looks in the world model to see what if any

ATN a determiner could start. (A given syntactic category can start at

most one ATN in CTE.) The parser finds that a determiner can start a noun

phrase ATN. As shown schematically in Figure 1.3 the parser then prepares

to try to recognize a noun phrase starting with the word the. It places a

string marker, *S, at the, and a corresponding ATN marker, *N, at the

etarting state of the noun phrase ATN. It also establishes an empty push

down stack.
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The parser is now ready to attempt the first transition. The

starting node of the noun phrase ATN has two arcs leading out of it, but
eince the is not a proper noun the first arc is not applicable. To make
the transition on the second arc the parser must successfully execute the

function PUSH. This particular function is always successful, it just

places a copy of the constituent pointed to by *$ onto the push-down stack.
When the PUSH function succeeds, the parser advances the "5 and tl pointers

giving the configuration shown In Figuro 1.4.
sentence 1 John kicked the bucket,
s t r i n g m a r k e r * S

PUSH ' PUSH INFLECT-RIGHT
A T N s t a r t — > • ' — T > • > X

d e t e r m i n e r n o u n
A T N m a r k e r * N

p u s h - d o w n s t a c k T H E

Figure 1.4

The parser proceeds to attempt another transition. As shown in the

Figure, the next arc requires a noun. In the world model, the parser finds

that bucket is a noun so the transition will succeed if the function

INFLECT-RIGHT can be executed successfully. The explanation of this

function requires understanding of the CTE semantic net.

1.3 The CTE Semantic Net

The node8 of the CTE semantic net are called concepts. In what

follows, a mapping will be established from English affixes, words, and

phrases into concepts. Concepts are written as parenthesized expressions.

That is, each node of the CTE semantic net is an expression! We will thus

establish a mapping from English affixes, words, and phrases into

C h a p t e r 1 - D r a f t 9 D r a f t - C h a p t e r 1



expressions. For example, the concept corresponding to the bucket can be

written as the expression, (BUCKET*X THE) - the notation for concepts will

be explained momentarily.

Associated with each concept Is a set of slots. For example, the

concept KICK corresponding to the verb kick would have, among others, a

subject slot and an object slot. The subject is the thing which does the

kicking and the object is the thing which gets kicked. Associated with

each slot is a description of how It can be filled. A slot of a concept is

aleo a concept and so to describe a slot we must describe a concept. Any

concept, and thus a slot, can be described by one or more predicates, and

by one or more character 1 zat 1 one. Predicates and characterizations are

also concepts. A predicate gives a property of something, while a

characterization gives an alternative way of looking at something. The

distinction is seen in saying "a toilet is white" vs. saying "a toilet is a

siphon". Describing it as a siphon we can go on to set up a correspondence

between the parts of a toilet and the corresponding parts of a siphon.

Similarly, to say that someone is male is merely to assign him the

masculine property. To say that he is a male, however, is to provide an

alternative characterization of him, with the implication that his behavior

can be predicted by making a correspondence between his behavior and that

of a male. In the example at hand, we could characterize the subject elot

of kick ae a person or an animal, or we could just give this slot the

predicate animate. This is shown schematically in Figure 1.5,

(Ignore the *A*s for the moment).

^ \

<^K

***\

- C h a p t e r 1 - D r a f t 1 0 O r a f t - C h a p t e r 1



j p \

KICK Characterizations: None
Predicates: None
Slots: (SUBJECT*A KICK) Characterizations: None

Predicates: ANIMATE
Slots: None

(QBJECTntA KICK) Characterizations: MATTER
Predicates: None
Slots: None

Figure 1.5
A Fragment of the World Model for KICK

Every concept has a reference list. This reference list is similar

in function to the property lists used in programming languages like LISP.

The process of placing a concept, A, which represents a predicate,

characterization, or slot of a concept, B, on B's reference list is called

attachment. A reference list has separate sections for predicates,

characterizations, and slots, and thus whether A is a predicate,

characterization, or slot of B Is determined by what section of B's

reference l ist i t Is on.

The description of concepts by predicates, characterizations, and

slots which are themselves concepts is what makes the CTE world model a

eemantic net. The fact that concepts are written as expressions, so that

predicates, characterizations, and slots are in fact assigned to

expressions, is not a common sort of thing and distinguishes the CTE from

other theories. When combined with the notions to follow, this turns out

to be a powerful method of describing how language is at the same time both

idiomatic and productive of new constructions.

Examples of concepts written as parenthesized expressions have been

given, i.e. (BUCKET*X THE), (SUBJECT*A KICK), (0BJECT#A KICK), but the

notation used has not yet been explained. The expression for any concept,

C, is constructed from two other concepts termed the genus and the

epec I a 11 zer of C. The general form of the expression is

(genus*meta-at tr i bute-abbrev i at i on spec i a I i zer).
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There are seven possible meta-attributes as shown in Figure 1.6.

m e t a - a t t r i b u t e a b b r e v i a t i o n e x a m p l e o f u s e

S P E C I E S S b u l l d o g - ( Q 0 G * S B U L L )
S T E R E O T Y P E T l a p d o g -♦ ( D 0 G * T L A P )
I N S T A N C E I F i d o - > ( D 0 G * I F I O O )
A S P E C T A s u b j e c t o f k i c k * ( S U B J E C T f t A K I C K )
R E S T R I C T I O N R f a t d o g - ( D G G * R F A T )
I N F L E C T I O N X t h e b u c k e t - > ( B U C K E T * X T H E )
P A R T I T I V E P fl o c k o f s h e e p - > ( F L 0 C K * P S H E E P )

Figure 1.6

By definition, all references to a given concept denote the same node in

the CTE semantic net. For example, the specializer of (SUBJECTftA KICK) or

(OBJECT*A KICK) is the same KICK concept which has these two concepts as

slots. The genus, meta-attribute, and specializer uniquely identify a

concept and thus serve to locate it in the semantic net.

By convention, every concept inherits the predicates,

characterizations, and slots of its genus, whenever those are not

contradicted by description on the concept itself. Herein lies the origin

of the term genus. Because of this convention, it makes sense to think of

the concepts as being organized in a hierarchy. Concepts are pictured as

being "under" their genus. Further, one refers to (00G*S BULL) as a

species of its genus, DOG, (D0G*T LAP) as a stereotype of DOG, etc. More

generally, any concept is termed a specialization of its genus.

The primary role of the specializer of a concept, C, is to

distinguish C from all other concepts having the same genus and meta-

attribute; thence the term specializer. For example, BULL distinguishes

(DOG*S BULL) from all other species of DOG. LAP distinguishes (00G*T LAP)

from all other stereotypes of DOG.

In review, note that while both the genus and specializer must be

used to distinguish a concept from others and thus to locate it in the

C h a p t e r 1 - D r a f t 1 2 D r a f t - C h a p t e r 1
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eemantic net, it Is the genus which primarily determines the "behavior" and

use of a concept since predicates, characterizations, and slots are

inherited from the genus.

We return now to the recognition of the bucket as a noun phrase.

At this point the reader may find it helpful to review what has been said

thue far.

1.4 Should Syntax be Represented in the ATN or the Uor ld Model

Having pushed THE onto the push-down list and recognized bucket ae

a noun, the parser attempts to execute the function INFLECT-RIGHT to

complete the transition to the final state of the noun phrase. To succeed,

INFLECT-RIGHT must succeed In inflecting the concept BUCKET corresponding

to the word, bucket, by the concept on the top of the push-down stack, THE.

We say "succeed in Inflecting" because INFLECT-RIGHT will only form this

inflection if it is permitted by the rules of grammar encoded in the

semantic net. That is, the ATN gives only the legal orders of syntactic

categories and which adjacent constituents can be combined. Further

conetrainte on what can be combined come from the semantic net.

To clarify what is going on here, consider the strings in Figure

1.7.

1.3 the bucket
*1 .4 bucket the
1.5 a bucket

*1.6 a water

Figure 1.7

Given that the and a are determiners and bucket and water are nouns, the

noun phrase ATN will rule out 1.4 because there is no series of arcs

corresponding to the ordering of syntactic categories: noun, determiner.

The noun phrase ATN will permit 1.3, 1.5 and 1.6 since they all have the
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order: determiner, noun, provided that the given determiner can inflect the

given noun. The rules for what determiners can inflect what nouns are

encoded in the semantic net. These rules permit 1.3 and 1.5, but prohibit

1 . 6 .

By refining the syntactic category noun to mass noun and count noun

and then further dividing count nouns into singular and plural count nouns

we could replace the noun phrase ATN with the one shown in Figure

1 .8

PUSH

singular count noun ' ^ k

Figure 1.8

The advantage of doing this would be that since water is not a singular

count noun, the ungrammatical combination a water would be sifted out by

the legal syntactic categories on the arcs and would never be passed to

INFLECT-RIGHT. The disadvantage is an increase in the size and complexity

of the ATN. It is a question of where these constraints should be

expressed, in the ATN arcs, In the ATN arc functions, or in the semantic

n e t .

Bucket the is unacceptable because the word order is incorrect.

Since the ATN is the only formalism in CTE capable of describing word

order, bucket the must be ruled out by the ATN. A water is incorrect

^ k
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because the normal sense of water is a mass noun, and a requires a singular
0^ count noun. There is in fact a productive mechanism by which we can create

a count noun sense of water. For example, if offered a choice from glasses
of water and coke, one could conceivably answer I'll take a water.

Allowable word senses do not involve word order and need not be expressed
in the ATN.

It takes I ess computation to rule out a combination by failure to

belong to a syntactic category than it does to rule it out by failure of a
function on an arc. This would seem to be an argument for elaborating the
ATN. However, when one considers how infrequently combinations like a

water occur he sees that in terms of average system performance little is

gained by ruling them out more efficiently.
In CTE we have chosen to make the syntactic categories on the ATN

arcs as generic as possible. This greatly simpl if ies the ATN*s, but,

gm\ obviously, it places a greater burden on the semantic net and the functions
on the arcs to rule out ungrammatical combinations. Several simpler ATN

systems have been implemented (Brown, Saccerdoti) which allow more
articulated categories on the arcs. These have the advantage in
construction that one does not have to discover the appropriate generic

syntactic categories. However, if these systems grow larger the price in
complexity will become obvious. Conceivably, one can alleviate this
problem by inventing an ATN "compiler" which will automatically discover
the appropriate syntactic generalizations.

1.5 FiMing Slots
MrIting the CTE ATN functions and semantic net rules turns out to

be relatively straight-forward in most cases. The key is to utilize the

hierarchical structure of the semantic net and the inheritance of slots.
||#*N
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Nouns and determiners, for example, are arranged in the hierarchies

exemplified in microcosm in Figure 1.9. These hierarchies,

Incidently, show us how the parser can determine if the concept

corresponding to a particular sense of a word is in a given syntactic

category.

DETERMINER

NOUN

DEFINITE-DETERMINER
I -THE

INDEFINITE-DETERMINER
■■ ■ SINGULAR-INDEFINITE-DETERMINER

trI — . ONE

MASS-NOUN

COUNT-NOUN

HATER

SINGULAR-COUNT-NOUN

L-BUCKET

Figure 1.9

Since a concept is formed from its genus, meta-attribute, and

specializer; whenever we have located a concept, we can easily obtain these

three components. It is quite 8 imp Is, then, to tracs through the semantic

net from a concept to its genus, and on to the genus of that genus, etc.

That is, to go "up" the semantic net toward more generic concepts. A

concept, B, is defined to be in the class of a concept, C, if C is

eventually reached by tracing up from B as mentioned above. Since locating
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the genus of a concept takes only a couple of machine instructions in the

current implementation of CTE, the test for class membership is very fast.

To indicate which determiners can inflect which nouns, each

determiner is given a slot called the INFLECTEE. For example, consider the

world model fragment shown in Figure 1.18.

THE
Characterizations:
Features:
S l o t s : ( I N F L E C T E E * A T H E )

Characterizations: NOUN
Features:
Slots:

SINGULAR-INDEFINITE-DETERMINER
Characterizations:
Features:
Slots: ( INFLECTEE*A SINGULAR-INDEFINITE-DETERMINER)

Character i zat i ons: SINGULAR-COUNT-NOUN
Features:
Slots:

Figure 1.18

The following rule of grammar can then be stated:

Gl) A concept, C, can inflect a concept, B, if B is a member of a class
formed by a characterization of the INFLECTEE slot of C.

For example, THE can inflect BUCKET because BUCKET is a member of the class

formed by NOUN (as shown in Figure 1.9) and NOUN is a characterization of

the INFLECTEE slot of THE (as shown in Figure 1.18). Similarity, A can

inflect BUCKET because BUCKET is a member of the class SINGULAR-COUNT-NOUN

and since A inherits its INFLECTEE slot from SINGULAR-INDEFINITE-

DETERMINER, the INFLECTEE slot of A is characterized by SINGULAR-COUNT-

NOUN.

Uhen given THE and BUCKET as arguments, INFLECT-RIGHT

a) First checks to see If the concept (BUCKET*X THE) is already present in
the semantic net. If so, it replaces the top element, THE of the
push-down stack with this concept, (BUCKET*X THE). INFLECT-RIGHT then
notifies the parser it has succeeded.
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b ) O t h e r w i s e , i t c h e c k s t h e s e m a n t i c n e t t o s e e i f t h e f o r m a t i o n o f ^
( B U C K E T * X T H E ) i s p e r m i t t e d u n d e r t h e r u l e o f g r a m m a r , G l , g i v e n )
above. (This rule grammar is implicit in the operation of the
INFLECT-RIGHT procedure, i.e. it is represented procedurally.)
INFLECT-RIGHT locates the INFLECTEE slot of THE, sees that this is
characterized by NOUN, and then verifys that BUCKET is in the class
formed by NOUN. (BUCKET*X THE) being permitted, it is formed, added
to the eemantic net, and placed on the push-down stack as in a).
INFLECT-RIGHT then notifies the parser it has succeeded.

c) Falling a) and b), INFLECT-RIGHT notifies the parser it has failed.

The implications of the above procedure are quite far-reaching.

The effect of step b) is to cause every grammatical expression actually

encountered to be permanently remembered as a new concept in the semantic

net. Ae such, it can be recognized on subsequent encounters in step a)

from Its genus, meta-attribute, and specializer. The potentially expensive

teet to see whether one concept can fill a slot of another is done only on

the first encounter. This seems an attractive option in a world of

exponentially declining computer memory prices and relatively constant

computation speeds. The retention of absolutely everything is not

eeeential to CTE, but the distinction between grammatically permitted and

actually existing concepts is considered quite important. Once remembered,

a new concept Immediately inherits descriptions from the concepts from

which it was formed, but it also can begin to acquire its own set of

predicates, characterizations, and slots, which override or supplement

those Inherited. In particular, as we shall see once the parser reaches

the phrase kicked the bucket, it can stand for an idiomatic meaning.

Once INFLECT-RIGHT has placed (BUCKET*X THE) on the push-down stack

in place of THE, the parser can take the transition to the final state of

the noun phrase ATN. The parse of the noun phrase is complete. In CTE,

the ATN*s are so written that the concept corresponding to the string

recognized by an ATN is always the only concept on the stack when the final

etate of the ATN is reached.
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1.6 Inflec t ions
In English, the determiner and the noun must agree in number. • A

determiner, like the which is unspecified as to number can go with either a

eingular or plural noun, the bucket, the buckets. A determiner specified
as to number requires agreement, *these bucket. Uhere the noun has the
same singular and plural form, the correct sense must be chosen, these

sheep. As we have seen, this constraint is implemented in CTE, by

appropriate characterization of the INFLECTEE slot of the determiner.
Formulations other than CTE frequently employ special feature checking
functions - a source of additional complexity.

Other implementations also copy features from the noun and

determiner to the expression created to represent the entire noun phrase.
For example, since ons says the buckets are, but the bucket is. it is

necessary to achieve number agreement betueen the verb and the subject noun
phrase. Commonly, the number is copied to the noun phrase and is then

f^ fetched from there for comparison with the verb. In CTE no copying is
done. Instead, attributes such as number are inherited by the concept

representing a noun phrase according to the general rules for inheritance
of attributes in the semantic net. This has two advantages. First, a
reduction In complexity is achieved because no copying functions need be
written. Second, the complexity of the new data structure created when a

new sentence is parsed is reduced to a bare minimum. The concept

representing the new sentence is constructed from existing ones using
specialization. No other constructive operations need be done in the
semantic net.

Recall that a concept inherits the predicates of its genus. The

concept (BUCKET*X THE) would thus inherit the number predicate of BUCKET as
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required. To avoid copying, it is also necessary for (BUCKET*X THE) to

Inherit predicates, such as DEFINITE, from THE. The solution adopted in

CTE is to allow an inflection to inherit properties from both its genus and

specializer. If an inflection, C, has genus, A, and specializer, B, then a

predicate, characterization, or slot on C overrides those inherited from A

and B and a predicate, characterization, or slot on B overrides those

inherited from A. This convention has proven to be extremely useful. The

inflection is one of the key computational devices in CTE.

Language Is known to bo open ended. Whenever something new is

found, a new word can be invented to name it. When one examines the

syntactic categories one by one, however, he sees that they are not all

open in the same sense. New determiners are invented very slowly in

comparison with nouns. In fact, only nouns, verbs, and adjectives are

truly open. These three categories contain words for concepts which may be

defined extra-l inguistical ly. Obvious examples are words for emotions,

color or taste. Uhile the language may determine which concepts are formed

in these categories, it is not the sole source of their definitions.

Other categories, like adverbs, do have infinitely many possible

members. However, CTE assumes that word senses in these categories can be

divided into those native to the category, like not and very in the case of

adverbs, and words which arise through conversion from another category, as

the adverb slowlu comes from the adjectivs slow. CTE assumes that the

native portion of such a category is finite and, in fact, can be usefully

structured using language specific principles. For example, English

provides features by uhich determiners can be classified in a tree as shown

in microcosm in Figure 1.9.

CTE assumes that the finite categories and the finite portions of
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the open categories are provided by the language for the interpretat ion of

the informat ion in the t ru ly open categor ies. The features used to

structure members of a finite category provide a definit ion of a member In

terms of I ts dist inct ion from other members. An understanding of these

features is key to understanding the language.

To review, CTE assumes a fini te set of syntact ic categor ies. Only

three of these syntactic categories - noun, verb, and adjective - have a

poten t ia l l y infin i te amount o f mater ia l na t i ve to them. The remain ing

categories have a rather small finite number of word senses all of which

can be included in a computer program for computational l inguistics.

Any category besides noun, verb, and adjective which has a

potent ia l ly in f in i te amount of mater ia l gets i t by convers ion (s low -»

s low ly ) o r o the r f o rms o f a f f i xa t i on ( f r y • • f r yab le ) f rom o the r i n f i n i t e

c a t e g o r i e s .

In CTE we assume that conversion is always done by inflection. The

special izer is In the category converted to - the genus in the category

conver ted f rom. Therefore, to find the syntact ic category o f a concept ,

one traces up the genus except in the case of an inflection, for which one

traces.up the specializer. For example, if we make -LY an adverb then

(SLQW*X -LY) is in the semantic class of SLOW, but in the syntactic

category, adverb. Compare

1.3. He walks slowly.
1.4. His walking is slow.

In both sentences, an adjective, slow, is used to describe a verb, walk.

In 3 the adjective has been converted to an adverb. In 4 the verb has been

converted to a noun. The language requires that an adjective modify a noun

and an adverb modify a verb. In constructing the parsed sentences these

conventions are obeyed by the syntactic categories of the concepts
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/^Sinvolved. However, the semantic classes of the concepts remain the same in

both examples.

It is with these thoughts in mind that determiners are taken to

inflect nouns.

1.7 Naming
To parse John kicked the bucket the CTE parser must trace through

the sentence ATN shown in Figure 1.11.

ONE-OBJECT
S t a r t P U S H P U S H M A K E - T E N S E I N F L E C T- L E F T

> > > > >
( n o u n * x ( v e r b * x ( n o u n * x

determiner) -ed-s-null) determiner)

Figure 1.11
A Simplified Sentence ATN

The third arc of this ATN requires the sequential execution of tuo

functions - ONE-OBJECT then MAKE-TENSE - something which didn't arise in ^
the noun phrase ATN. The steps in tracing through this ATN for John kicked
the bucket are shown schematically in Figure 1.12.

eentence John kicked the bucket,
string-marker *S
8tack
sentence John kicked the bucket.
s t r i n g - m a r k e r * S
etack (JOHN*X NULL-DETERMINER)
eentence John kicked the bucket,
e t r i n g - m a r k e r * S

(KICK*X -ED)
(J0HN*X NULL-OETERMINER)

sentence John kicked the bucket,
s t r i n g - m a r k e r * S
stack after ((KICK*X (BUCKET*X THE))*X -E0)
ONE-OBJECT (J0HN*X NULL-OETERMINER)
stack after (UKICK*T (BUCKET*X THE))*X PAST-TENSE)*T
MAKE-TENSE ((MALE*T (NAME*S J0HN))*X NULL-DETERMINER))
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sentence John kicked the bucket.
s t r i n g - m a r k e r * S
stack (U(KICK*T (BUCKET*X THE))*X PAST-TENSE)*T

((MALE*T (NAME*S J0HN))*X NULL-DETERMINER))*X DECLARATION)

Figure 1.12
Steps in parsing John kicked the bucket

Uhen the parser Is called to parse a string of words into a
eentence it prepares to trace through the sentence ATN? it puts the etrino,
marker *S at the beginning of the sentence and sets up an empty pushdown
8tack for use in tracking through the sentence ATN.

The first arc of the sentence ATN is labeled with (noun*x
determiner). By convention In CTE, this can be matched only by a

determiner inflecting a noun. The first word in the string, John,

corresponds to the concept JOHN, which Is a proper noun, not a determiner.
The parser is faced with the dilemma of matching a proper noun againet
(noun*x determiner). There is also a further difficulty. John has two

word senses, shown in
1. John kicked the bucket.
1.5. John is a common name.

A male can kick a bucket, a name can't. Uhen the parser is looking at the
first word of 1 or 5, it can't know which is the correct sense for that
sentence.

There are two basic strategies which a parser can follow In dealing
with multiple word senses. The first is to try each sense in turn -

returning multiple parses uhen more than one sense results In a correct
parse. This strategy was used in early systems because of Its simplicity,
and was found to be computationally explosive. Most words have many
eenses.

The second strategy is known as the wait and see strategy. At any
decision point, the possible alternatives are lumped Into classes according
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to how they affect the decision at hand. The computation is brought

forward for each such distinct class, rather than for each alternative. To /*\

Implement the wait and see strategy each class must be represented and a

way of getting from the class to the individual alternatives provided.
In terms of the problem at hand, there is no need to split the

senses of a word any farther than required by the arc transition attempted.
Since both word senses of John are nouns, both, if determined, would

eatiefy the first arc of the sentence ATN. Suppose we let JOHN stand for
both of these senses, which we write (NAME*S JOHN) and (MALE*T (NAME*S

JOHN)). Ue enter into the world model that JOHN names (NAME*S JOHN) and
(MALE*T (NAME*S JOHN)). Naming is represented schematically with an arrow,

as shown in Figure 1.13
JOHN -> (NAME*S JOHN)
JOHN - (MALE*T (NAME«S JOHN))

Figure 1.13

The first arc of the sentence ATN requires a noun inflected by a

determiner. It is easy, however, to come up with sentences where the

subject of a sentence is a noun without a determiner.
1. John kicked the bucket.
1.6. Uater is required for life.

It is common in this case for grammarians to speak of a null determiner.
Since the absence of a determiner can be detected syntactically just as
well as any specific determiner can, no determiner can stand as a
determiner.

In CTE such null elements are explicitly inserted to obtain a

uniformity of representation. The insertion of the null determiner is done

by naming. For example suppose
JOHN + (J0HN*X NULL-DETERMINER)
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is placed in the world model* Uhen the CTE parser finds that it cannot

match JOHN to (nounftx determiner) it looks for all the concepts named by

JOHN. It finds (NAf1E*S JOHN), (MALE*T (NAME*S JOHN)), and (J0HN*X NULL-
DETERMINER). Using the computationally fast syntactic category test, it
eliminates all but (JOHNftS NULL-DETERMINER) as being in the wrong syntactic

category. Since John Is a noun, this last one matches.
The mechanism employed here is a very general and important one in

CTE. A concept is taken to name another concept which is in a different

eyntactic category. In order to achieve a match, the parser will trace
down naming links looking for concepts of the syntactic category required

by the pattern to be matched. Thus, the replacement of names by the

concepts they name is driven by the matching process - that Is, by the
immediate context of the name.

The wait and see strategy is implemented In the grammar and parser

by requiring that the parser never replace a name with a concept it names

{ if the name itself will match the pattern. That is, naming links are used
only when a match cannot be otherwise achieved.

Note that two slightly different uses of naming have been
introduced. In the first, JOHN stands for (NAME*S JOHN) and (MALE*T

(NAMEftS JOXN)), two concepts In the same syntactic category as JOHN but
with particular meanings lacked by JOHN. In the second JOHN stands for

(JOHN*X NULL-DETERMINER), a concept in a different syntactic category - the

syntactic category controlling the interpretation of the meaning of JOHN.
If it were in fact necessary to write a naming rule of the form

proper name ■» (proper-name*x null-determiner) for every proper name, the

naming mechanism would bo too unuieldly to implement. It is necessary to
define naming productivelu. In CTE, if any concept A names an inflection
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of iteelf, (A*X B) then any concept C in the syntactic class of A is

inferred to name (C*X B). For example, instead of placing JOHN •» (JOHN*X

NULL-DETERMINER) in the world model it is sufficient to use PROPER-NAME -

(PROPER-NAME*X NULL-DETERMINER). Since JOHN is a PROPER-NAME, the fact

that JOHN names (JQHN*X NULL-DETERMINER) is then inferred by the parser

from (PROPER-NAME*X NULL-OETERMINER).

Having completed the transition on the first arc of the sentence

ATN, the parser tries to match tho pattern on the second arc, (verb*x -ed-

s-null), with a concept corresponding to kicked. In the world model the

parser finds that the suffix -E0 may be productively applied to verbs. (Of

course, there are exceptions for small classes of verbs which override this

general rule.) The parser thus matches (KICK*X -ED) against (verb*x -ed-s-

n u l l ) .

The third transition faces the parser with matching (noun*x

determiner) again. The string marker is pointing at the, which does not

natch this pattern; nor does it name anything which matches this pattern.

But, as was already explained, the parser recognizes that the can start a

noun phrase. In the current implementation of CTE the semantic net

contains the information that a noun phrase can indeed match the pattern

(noun*x determiner). This has been included so that the parser can avoid

building a noun phrase if it could not possible match the pattern at hand.

The parser builds the noun phrase (BUCKET*X THE). To do this it

sets up a separate string pointer and push-down-stack for the noun phrase.

During the formation of the noun phrase the sentence string pointer and

push-down-stack remain unaltered. To complete the transition it must

execute the functions ONE-OBJECT and MAKE-TENSE. The function ONE-OBJECT

expects the top element on the stack to have an OBJECT slot. Its goal is
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to fill the OBJECT slot of this top element with the noun phrase starting
0^ at the current location of the string marker. In the case at hand this

means filling the OBJECT slot of (KICK*X -ED) with (BUCKET*X THE). (KICK*X

-ED) inherits its OBJECT slot from KICK. As shown In Figure 1.5. The
OBJECT slot of KICK has been characterized as MATTER. To fill this slot
with (BUCKET*X THE), the function ONE-OBJECT must be able to characterize

(BUCKET*X THE) as MATTER. Assuming that BUCKET is in the class MATTER,
this is easy, but in the actual CTE implementation such a characterization
could require some rather expensive pattern matching.

Recall that in CTE, inflections are used to implement the syntactic
constraints of a language as illustrated by

3. He walks slowly.
4. His walking is slow.

S u b j e c t P r e d i c a t e
3. (UALK*X PRESENT-TENSE) (SL0U*X ADVERB)
4 . (UALK*X NOUN) SL0I4

v In 3 the sub jec t Is In the syn tac t ic ca tegory TENSE and the pred ica te in

the syntactic category ADVERB. In 4 the subject is in the syntactic

category NOUN and the predicate is in the syntactic category ADJECTIVE.

While the syntactic categories of 3 and 4 differ, the semantic classes do

not. Uhen filling slots other than the INFLECTEE the parser works with the

semantic classes. The INFLECTEE slot is filled based on syntactic

categories.

Having discovered that (BUCKET*X THE) can fill the OBJECT slot of

(KICKtX -ED), ONE-OBJECT forms the expression corresponding to kicked the

. bucket. The convention followed here is to stereotype KICK with (BUCKET*X

THE), forming (KICK*T (BUCKET*X THE)) and then to inflect this with -ED.

forming ((KICK*T (BUCKET*X THE))*X -ED).

At the semantic level, (KICK*T BUCKET) is viewed as a stereotypical
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kind of KICK about which information not applicable to KICK in general may

be known. For example, i f cows kick the bucket, the milk is spi l t .

(KICKftT BUCKET) may have different slots than KICK. Uhen combined with

KICK, the concept (BUCKET*X THE) performs two distinct functions. First,

it selects a specialization of KICK, (KICK*T (BUCKET*X THE)). In CTE, a

convention has been implemented which insures that if a concept C is in

class B, then the concept (A*tneta-attr ibute C) is in class (A*meta-

at t r ibute B). This convent ion is cal led der ivat ive subclass i f teat ion,

because concepts with the same genus are thus classified into the hierarchy

of the i r spec ia l izers . In our example , der iva t ive subc lass}ficat ion means

that since (BUCKET*X THE) is in the class BUCKET, (KICK*T (BUCKET*X THE))

is in the class of (KICK*T BUCKET) and thus inherits any slots of (KICK«T

BUCKET) which override those of KICK.

Besides selecting a specialization of KICK, (BUCKET*X THE) also

fil ls the OBJECT slot of the selected special izat ion. The fact that BUCKET

fills the OBJECT slot of (KICK*T (BUCKET*X THE)) can bo determined from the

expression (KICK*T (BUCKET*X THE)) because in CTE the slots of a verb are

constrained to stereotype i t in a specific order start ing with the OBJECT.

The use of concepts to fil l slots and simultaneously select

special izations is a very important aspect of CTE. The importance of

ee lee ting specializations of a verb is seen clearly uhen we compare the

difference in meaning of, for example, shoot pool, shoot rapids, shoot

p ic ture, shoot gun, and shoot rabbi t .

Having replaced the top item on the push-down stack with ((KICK*T

(BUCKET*X THE))*X -ED) the parser begins execution of MAKE-TENSE, the

second function which must be executed to make the transition on the third

arc of the sentence ATN.
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A TENSE has two slots, a SUBJECT and an INFLECTEE. MAKE-TENSE

0^ tries to insure that the item on the top of the stack is of syntactic type,
TENSE.

It does this by attempting to match the item on the top of the
stack to (verbftx tenss). To match (KICK*X -E0) to (verbftx tense), the

parser must use a third type of naming.
The world model contains a naming rule of the form

(VERB*X -E0) + (VERB*X PAST-TENSE)
Thie type of naming rule is also productive on the genus. The parser can

therefore infer that (KICK*X -ED) names (KICK*X PAST-TENSE) and make the
transition. The SUBJECT slot of the resulting specialization is then
filled with the next to top item on the push-down stack. Obviously, the
item filling the SUBJECT of the TENSE must also satisfy the SUBJECT slot of
the verb kick. As shown in Figure 1.12, this means that JOHN must be

^ replaced with (MALE*T (NAME*S JOHN)) because a PROPER-NOUN cannot kick a
bucket. The mechanism by which this is insured will be explained

momentarily in describing the passive transformation.
The final step In parsing John kicked the bucket is to inflect the

entire expression with DECLARATION to distinguish it from the question John
kicked the bucket?

1.8 The Passive Transformation
A basic tenet of transformational grammar is that sentence pairs

like 1 and 7 are transformationally related.
1. John kicked the bucket.
1.7. The bucket was kicked by John.

In CTE, this relationship is seen as one between the slots of the

predlcatee kicked and was kicked. The sentence 7 satisfies the same set of
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four ATN arc transitions in the sentence ATN as, for example, 8.

Namely, noun phrase, tensed be, adjective, prepositional phrase.

1.8. John was sure of success.

In both cases, the functions on the arcs must determine if the subject noun

phraee can fill the subject slot of the adjective and if the prepositional

phrase can fill a slot of the adjective. The transformational insight is

that the requirements for filling the subject slot of 7 are those for

filling the object slot of It and the requirements for whether the

prepositional phrase .of 7 can modify the adjective are those for filling

the eubject slot of 1. This is expressed by the notion of slot shift.

Specifically, the SECOND-PARTICIPLE is taken to form a syntactic category

which for simplicity can be considered a subcategory of adjective. A world

model fragment describing the second participle is shown in Figure

1.14. This Figure shows that the INFLECTEE of a second participle

must be a verb and the SUBJECT of a second participle must be the OBJECT of

its INFLECTEE. Further, this OBJECT of the INFLECTEE has the predicate

SHIFTED, which means that it will not occur as the direct object of the

verb, as it normally would.

SECOND-PARTICIPLE?
predicates:
character izat ions:
s lo ts : ( INFLECTEEf tA SECOND PARTICIPLE)

predicates:
c h a r a c t e r i z a t i o n s : V E R B
slots:

(SUBJECT«A SECOND-PARTICIPLE)
features:
characterizations: (0BJECT*A (INFLECTEE*A

SECOND-PARTICIPLE))
predicates: SHIFTED
character i zat ione:
s lo ts :

slots:

Figure 1.14
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In parsing 7, the parser will find (KICK*X -ED) which it converts

to (KICK*X SECOND-PARTICIPLE) in order to make the third transition of the

sentence ATN. Then, when the parser is looking for the SUBJECT of (KICK*X

SECOND-PARTICIPLE) the rules of inflections state that slots inherited from

SECOND-PARTICIPLE override those inherited from KICK. Thus the SUBJECT of

(KICK«X SECOND-PARTICIPLE) is found from the SUBJECT of SECOND-PARTICIPLE.

From Figure 1.14, this is the OBJECT of ths INFLECTEE. The INFLECTEE In

this example being KICK. Thus ths SUBJECT of (KICK*X SECOND-PARTICIPLE) is

the OBJECT of KICK.

The filling of a slot with bu John is handled in a similar manner.

This Is spelled out in detail in the next chapter.

1.9 Idioms
John kicked the bucket is an idiomatic way of saying John died.

The syntactic scope of this idiom is demonstrated by

1. John kicked the bucket.
1.9. John has kicked the bucket.
1.18. Uhen will John kick the bucket?
1.11. John'8 kicking the bucket upset us.
1.12. John is kicking the bucket.
♦1.13. John is kicked the bucket.
♦1.14. John kicked a bucket.
*1.15. The bucket was kicked by John.

Adding to the world model the naming transformation

(KICK*T (BUCKET*X THE)) -»
(DIE*S (KICK*T (BUCKET*X THE)))

permits 1 to 12. Sentence 13 is disallowed by the ATN network which does

not permit the formation of UKICK*T (BUCKET*X THE))*X -ED) after forms of

be. 14 Is disallowed because it uses a bucket and the naming rule uses the

bucket. 15 is ruled out because under the passive transformation (BUCKET*X

THE) is no longer used to specialize KICK as object. A more sophisticated

treatment of this idiom would have to include the fact that the progressive

12 is marginal, .as is the progressive reading of 11.
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Under the wait and see strategy this idiomatic naming

transformation would not be taken unless dictated by context - a subject

beyond the scope of this overview.

1.10 Other Transformations
Ae Chomsky has recently observed, "noun phrase movement" as

exhibited by the passive transformation accounts for many of the

transformations in traditional transformational grammar. However, there

are three other types of transformations, UH- movement, extraposition, and

minor movement. Examples of these are

UH- movement
1.16. John kicked what?
1.17. Uhat did John kick?

Extraposit ion
1.18. That uou are here is great.
1.19. It is great that uou are here.

M i n o r M o v e m e n t " * ^
1.20. I picked the bucket up..
1.21. I picked up. the bucket.

Extraposition and minor movement transformations are coded into the ATN.

UH- movement requires special procedures to be written Into the parser. To

see exactly how these things are done the reader will have to read the

remaining chapters. Us have reached a level of sophistication which

requires us to go back and develop the ideas already presented more fully

and precisely.

**%
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